spark申请资源时,报错了,如下
2019-05-15 10:15:15 INFO BlockManagerInfo:54 - Added broadcast_0_piece0 in memory on namenode1:37836 (size: 83.1 KB, free: 6.2 GB)
2019-05-15 10:15:15 INFO SparkContext:54 - Created broadcast 0 from broadcast at DAGScheduler.scala:1161
2019-05-15 10:15:15 INFO DAGScheduler:54 - Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at sql at run.scala:132) (first 15 tasks are for partitions Vector(0, 1))
2019-05-15 10:15:15 INFO YarnScheduler:54 - Adding task set 0.0 with 2 tasks
2019-05-15 10:15:30 WARN YarnScheduler:66 - Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
提示已经很清楚了,资源不够。因资源不够报出来的错识,非常的多。以前写的博客里面有提到了一些。
解决办法有二种
一,增大spark可利用资源
1,修改yarn-site.xml
<property> <name>yarn.nodemanager.resource.cpu-vcores</name> <value>24</value> </property> <property> <name>yarn.scheduler.minimum-allocation-vcores</name> <value>1</value> </property> <property> <name>yarn.scheduler.maximum-allocation-vcores</name> <value>24</value> </property> <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>24576</value> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>1024</value> </property> <property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>24576</value> </property>
2,修改spark-defaults.conf
#spark.driver.cores 1 spark.driver.memory 8g spark.executor.cores 3 spark.executor.memory 3g #spark.executor.instances 3
根据实际的硬件情况去调整,目的就是增加spark的可支配资源
二,采用spark动态资源分配,本人还没有尝试。
转载请注明
作者:海底苍鹰
地址:http://blog.51yip.com/hadoop/2137.html
手动点赞