前面写过一篇hadoop集群安装配置的文章。只用了二台机器,假如机器快满了,就需要在加机器。hadoop加节点,不需要重启hadoop服务。
一,增加节点的准备工作
1,修改主机名,所有节点机器hosts保持一至
2,ssh免密码登录
3,修改slaves,所有节点一样
scp把老节点的etc/hadoop的配置copy到新的节点
二,在新节点的启动
[root@bigserver3 hadoop]# ./sbin/hadoop-daemon.sh start datanode [root@bigserver3 hadoop]# ./sbin/yarn-daemon.sh start nodemanager [root@bigserver3 hadoop]# jps 1569 Jps 1401 DataNode 1499 NodeManager [root@bigserver3 hadoop]# yarn node -list 18/12/27 22:35:41 INFO client.RMProxy: Connecting to ResourceManager at bigserver1/10.0.0.237:8032 Total Nodes:2 Node-Id Node-State Node-Http-Address Number-of-Running-Containers bigserver3:40901 RUNNING bigserver3:8042 0 bigserver2:43959 RUNNING bigserver2:8042 0
三,均衡hdfs存储
1,设置环境变量
# echo "export PATH=/bigdata/hadoop/bin:$PATH" >> ~/.bashrc # source ~/.bashrc
这样就可以直接使用hadoop/bin目录下的命令了
2,配置均衡带宽,默认是1M
# hdfs dfsadmin -setBalancerBandwidth 52428800 //设置50M Balancer bandwidth is set to 52428800
3,均衡hdfs的存储
[root@bigserver3 hadoop]# ./sbin/start-balancer.sh -threshold 5 starting balancer, logging to /home/bigdata/hadoop/logs/hadoop-root-balancer-bigserver3.out
默认是10,数字越大均衡时间越短,越不均衡,数字越小均衡时间越长,越均衡
4,查看一下均衡后的结果
[root@bigserver3 hadoop]# hadoop dfsadmin -report DEPRECATED: Use of this script to execute hdfs command is deprecated. Instead use the hdfs command for it. Configured Capacity: 2382153052160 (2.17 TB) Present Capacity: 2381362919833 (2.17 TB) DFS Remaining: 2381087567872 (2.17 TB) DFS Used: 275351961 (262.60 MB) DFS Used%: 0.01% Under replicated blocks: 20 Blocks with corrupt replicas: 0 Missing blocks: 0 Missing blocks (with replication factor 1): 0 ------------------------------------------------- Live datanodes (2): Name: 10.0.0.193:50010 (bigserver3) Hostname: bigserver3 Decommission Status : Normal Configured Capacity: 441499058176 (411.18 GB) DFS Used: 3000729 (2.86 MB) Non DFS Used: 392808039 (374.61 MB) DFS Remaining: 441103249408 (410.81 GB) DFS Used%: 0.00% //是否均衡主要看这二项 DFS Remaining%: 99.91% //是否均衡主要看这二项 Configured Cache Capacity: 0 (0 B) Cache Used: 0 (0 B) Cache Remaining: 0 (0 B) Cache Used%: 100.00% Cache Remaining%: 0.00% Xceivers: 1 Last contact: Thu Dec 27 22:38:51 EST 2018 Name: 10.0.0.236:50010 (bigserver2) Hostname: bigserver2 Decommission Status : Normal Configured Capacity: 1940653993984 (1.77 TB) DFS Used: 272351232 (259.73 MB) Non DFS Used: 397324288 (378.92 MB) DFS Remaining: 1939984318464 (1.76 TB) DFS Used%: 0.01% //是否均衡主要看这二项 DFS Remaining%: 99.97% //是否均衡主要看这二项 Configured Cache Capacity: 0 (0 B) Cache Used: 0 (0 B) Cache Remaining: 0 (0 B) Cache Used%: 100.00% Cache Remaining%: 0.00% Xceivers: 1 Last contact: Thu Dec 27 22:38:51 EST 2018
四,在master测试关闭和启动hadoop集群
[root@bigserver1 sbing]# ./stop-all.sh This script is Deprecated. Instead use stop-dfs.sh and stop-yarn.sh Stopping namenodes on [bigserver1] bigserver1: stopping namenode bigserver2: stopping datanode bigserver3: stopping datanode Stopping secondary namenodes [0.0.0.0] 0.0.0.0: stopping secondarynamenode stopping yarn daemons stopping resourcemanager bigserver2: stopping nodemanager bigserver3: stopping nodemanager no proxyserver to stop [root@bigserver1 sbing]# ./start-all.sh This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh Starting namenodes on [bigserver1] bigserver1: starting namenode, logging to /home/bigdata/hadoop/logs/hadoop-root-namenode-bigserver1.out bigserver2: starting datanode, logging to /home/bigdata/hadoop/logs/hadoop-root-datanode-bigserver2.out bigserver3: starting datanode, logging to /home/bigdata/hadoop/logs/hadoop-root-datanode-bigserver3.out Starting secondary namenodes [0.0.0.0] 0.0.0.0: starting secondarynamenode, logging to /home/bigdata/hadoop/logs/hadoop-root-secondarynamenode-bigserver1.out starting yarn daemons starting resourcemanager, logging to /home/bigdata/hadoop/logs/yarn-root-resourcemanager-bigserver1.out bigserver2: starting nodemanager, logging to /home/bigdata/hadoop/logs/yarn-root-nodemanager-bigserver2.out bigserver3: starting nodemanager, logging to /home/bigdata/hadoop/logs/yarn-root-nodemanager-bigserver3.out
这一步对于新增节点来说,是不需要的。只是个人测试。
转载请注明
作者:海底苍鹰
地址:http://blog.51yip.com/hadoop/2019.html